
Alireza Asadpoure, PhD
Assistant Professor
Civil & Environmental Engineering
Contact
508-990-9652
ccucfrqwtgBwocuuf0gfw
Textiles 225
Education
2011 | Johns Hopkins University, Baltimore, MD | PhD in Civil Engineering |
2005 | Sharif University of Technology, Tehran | MS in Civil Engineering |
2003 | Tehran University, Tehran | BS in Civil Engineering |
Teaching
- CEN 202 - Mechanics of Materials
- CEN 307 - Analysis and Design of Reinforced Concrete Structures
- CEN 430/505 - Finite Element Analysis
- MNE 485 - Finite Element Method
- CEN 430/530 & MNE 491/590 - Special Topics: Topology Optimization with Application in Solid and Structural Mechanics
Teaching
Programs
- Civil & Environmental Engineering MS
- Civil Engineering BS, BS/MS
- Engineering and Applied Science PhD
- Environmental Resources Engineering Concentration
Teaching
Courses
The methods of structural analysis and design of reinforced concrete beams, columns, frames, and one-and two-way slabs are formulated and discussed.
Fundamental matrix algebra including inversion of matrices. Stiffness matrices for spring assemblages, trusses, beams, and planar frames. Introduction to flexibility method. Computer programs are used by students to solve matrix equations.
General topics of interest and relevance to civil & environmental engineering applications. Topics may include subject matter related to transportation engineering, geotechnical engineering, structures design, water resources, fluid mechanics, and/or environmental science and engineering. Laboratory and field exercises may supplement lecture material. Course can be repeated with change of content.
Finite element method and its application to structural geotechnical, and water resource engineering. Students will apply analytical and computer techniques, including the use and modification of existing computer programs.
Fundamental matrix algebra including inversion of matrices. Stiffness matrices for spring assemblages, trusses, beams, and two and three dimensional frames. Introduction to flexibility method. Computer programs are used by students to solve matrix equations.
The first course in engineering mechanics, with two major objectives: first, to introduce the student to the science of engineering mechanics and second to introduce the student to the art of applying science to the solution of engineering problems. The specific vehicle or curriculum to accomplish these objectives will be a study of the statics of rigid bodies.
Principles of the finite element method for solid mechanics. In addition, some fluid and heat flow problems will be covered. Topics include the direct method; energy methods; variational principles; interpolation functions; and the modeling of truss, beam, plate, and shell structures. This course is half theory and half computer modeling.
Research
Research Interests
- Computational Design of Architected and Multifunctional Materials, Metamaterials
- Structural and Multidisciplinary Optimization
- Robust-based and Reliability-based Optimization
- Data-driven Optimal Design
- Uncertainty Quantification and Stochastic Mechanics
Dr. Asadpoure is a faculty member in the Department of Civil and Environmental Engineering at the University of Massachusetts Dartmouth. He received his PhD in structural mechanics from the Department of Civil Engineering at the Johns Hopkins University. His research experience and interests are in the field of computational mechanics with emphasis on stochastic modeling and optimization of complex systems and materials. Dr. Asadpoure develops design methodologies by incorporating advanced stochastic modeling and applied statistical methods into design topology optimization resulting in materials and systems with unprecedented performance. His research includes robust and reliable device/component/system designs considering a wide range of constraints in their manufacturing, vibration, stability and/or cross physical properties.