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QUASI-NORMAL RINGING (QNR)

o |f disturbed, black holes “settle” with a very
characteristic gravitational wave (GW) signal, called
quasi-normal ringing (QNR).

* This is typically observed at the late stages of GW
emission from a binary black hole merger.

« Computing these frequencies from theory is
therefore, a very important problem in gravitational
wave physics.



QUASI-NORMAL RINGING (QNR)

* Thisis an example of a binary
black hole merger’s signal,
borrowed from CERN’s
database

 AS One can see, the true
wave function is rather
complicated

 This project will serve as @
precursor for such a
complicated wave with
some calculated
simplifications

Quasi-circular BH merger




’—ﬂ
DERIVATION

* To use the “shooting” method, one must first have an ODE
and two boundary conditions

« Computation of QNR for the simplest black hole may be
reduced down to solving a simple wave equation with a
potential with radiative boundary conditions
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THE POTENTIAL

 For this project, a scalar field is used as a proxy for a frue
black hole potential

Vix) = cosh?(x)

* The potential used is called the Poschl-Teller potential
* This potential is very similar to that of a black hole
* There are exact solutions to check against
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DERIVATION

» Using the anzatz that ¢ = 9(x)e~™¢, one can remove the
time dependence in the wave equation
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* This is now an eigenvalue problem where w? is a complex
eigenvalue
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DERIVATION

« Using the anzatz that 9 = ™) and solving the equation for a’(x), we
can arrive at a simplified version of the equation we wish to solve
numerically

a'(x) = —i(a(x)?* +V(x) —w?)

« This form solving for a’(x) is easier to work with because it has very
simple boundary conditions
a'(—»o) - —w
a(+o0) - +w



THE "SHOOTING"™ METHOD

* An iterative method for boundary-value problems for
ordinary differential equations (ODEs)

* The method begins with having a know left and right
boundary value

 Then, a variant of Newton's method is used to iterate from
the left boundary to the right boundary

« At this point, the numerical value is subtracted from the true
value, at this right boundary, and this is taken as the error
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PROGRAM

« For the numerical method that is used to solve for a’(x) the Runge-
Kutta-4 method was chosen for its reliability and lower error over other
methods

» Since the w values can be complex, the program will choose test
values out of a complex disk

« The Poschl-Teller potential is multi-moded, which each higher mode
being increasingly hard o compute

« Because of computational constrictions, only the first mode will be
considered here



PROGRAM METHO

 Since the real and imaginary parts of the w seemed to be
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approaching the true value at different rates, the decision was made
to record all of the values of @ that either satisfied low real error or low

Imaginary error

« After gathering these “good” values, they could be graphed against

their error

* The “best” w value, with the lowest error, from the real prediction and

Imaginary prediction could then be averaged into the best guess of

the frue eigenvalue
 In theory, they would both produce the idenfical



GRAPH FOR MODE 1

Numerically Predicted Values of W for Mode 1 * These qre all values that pCISS@d an
- imaginary W “error filter” of sorts

Real W

True Value

 The lower the relative error, the

closer the points lie to the center of
the graph
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« AS One can see, two points (one
real and one imaginary) predicted
values very close to the true
1 86 y ;:Z-I E::art 1 88 [ 89 180 S OIU.I.i On




Real Prediction 0.8643 — 0.4999i
Imaginary Prediction | 0.8683 — 0.4699i
Averaged Prediction | 0.8663 — 0.4849i

True Eigenvalue 0.8660 — 0.5000i
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DATA FOR MODE 1

« Thus, this method seems to nearly
find the real part of the true value,
but has higher error in the
imaginary part

« To increase accuracy, a smaller
step size could be used in order to
sample a larger range of more
accurate w values

« However, more samples takes
exponentially more time



INCREASE
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D EFFICIENCY

 In order to allow for this higher degree of accuracy, | first
began by testing various command optimizations

 Since the numbers being dealt with are very small, gcc's
—ffast-math can be used to simplity a lot of the
mathematical calculations with little effect on the output

* For numbers this small, the error created by this
optimization would be on the order of 1071
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INCREASED EFFICIENCY

* There is also the gcc —O optimization

* These -0O0, -O1, -O2 and -0Og3 flags slightly increase memory
usage and compiling tfime, but increasingly reduce
execution time

« For a medium sized program, the compiling time will not
cause a noticeable difference



INCREASED EFFICIENCY

Optimization vs Runtime * This grc:ph S.hOWS fhe change in
execution time for each
combination of the --ffast-math flag
and -OX flags

— Cares vs Walltime

« One can see that --fast-math and -
O3 create the most efficient code

« Using these flags reduced the
execution time by 440%

01 02 fim 03 fm+01 m+02 fm+03
Optimization
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PARALLEL COMPUTING

 Since the program exists in the form of a loop, making this
loop a parallel region will allow for many value of w to be
sampled at the same time

 For this, | have used Stampede?2, a supercomputer based in
Texas and OpenMP (a parallel computing package)

* By allowing multiple computing nodes to access my
program, Stampede can immediately outpace my laptop
that has only one open node for computation



PARALLEL COMPUTING

Threads vs Program Walltime for OpenMP « Asone can See, the CIVCI”CIbW of
Threads vs Walltime more nodes greatly reduced the
wall time for the program

« Af around 64 nodes, the
program’s wall time begins to level
off, indicting that there is little
reason to allow more nodes to
access the program

 This would prove more costly
and be of inconsequent gain




Speed-up (T1/TN)

Threads vs Program Speed-up for OpenMP

- Threads vs Speed-up /\

PARALLEL COMPUTING

« Speed-up time shows the relative
difference in wall fime when
compared to the serial version (1
node)

* As mentioned in the last slide, it
seems that at 64 nodes, the program
has its largest speed-up value

« This would be the optimum amount
of nodes to use for this program
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FUTURE IMPROVEMENT

 One way to make this program more accurate is fo use @
parallel-shooting method instead of the standard method

* This method decreases propagation error by matching
points inside and at the boundaries of the function

» Perhaps another value(s) can be found in order 1o
employ such a method, especially when moving to o
more complicated potential
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CONCLUSION

* The “shooting” method, with an RK4 scheme, was shown to be able to
find the eigenvalues of a GW-like wave function

« With command-line optimizations, the program was able to execute
440% faster than the original version with a negligible change to the
output

* By making the code work in parallel, the program was able to
execute even faster, making it possible to use a smaller step size and
more accurate numbers in the numerical approximations
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NEXT STEPS

* One can now explore the higher modes of the Poschl-Teller
potential because of the more efficient program

* Then, a tfrue black hole potential can be infroduced and
one can see how well the program can handle a simple,
real-world case

* Finally, one should be able 1o use any arbitrary black hole
potential and obtain the eigenvalue frequency of its QNR
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