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QUASI-NORMAL RINGING (QNR)

• If disturbed, black holes “settle” with a very 
characteristic gravitational wave (GW) signal, called 
quasi-normal ringing (QNR). 

• This is typically observed at the late stages of GW 
emission from a binary black hole merger. 

• Computing these frequencies from theory is 
therefore, a very important problem in gravitational 
wave physics. 



QUASI-NORMAL RINGING (QNR)
• This is an example of a binary 

black hole merger’s signal, 
borrowed from CERN’s 
database  

• As one can see, the true 
wave function is rather 
complicated 

• This project will serve as a 
precursor for such a 
complicated wave with 
some calculated 
simplifications



DERIVATION

• To use the “shooting” method, one must first have an ODE 
and two boundary conditions

• Computation of QNR for the simplest black hole may be 
reduced down to solving a simple wave equation with a 
potential with radiative boundary conditions
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THE POTENTIAL

• For this project, a scalar field is used as a proxy for a true 
black hole potential

𝑉𝑉 𝑥𝑥 =
1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐2(𝑥𝑥)

• The potential used is called the Poschl-Teller potential
• This potential is very similar to that of a black hole
• There are exact solutions to check against



DERIVATION

• Using the anzatz that 𝜑𝜑 = 𝜗𝜗(𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, one can remove the 
time dependence in the wave equation
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− 𝑉𝑉 𝑥𝑥 𝜗𝜗 = −𝜔𝜔2𝜗𝜗

• This is now an eigenvalue problem where 𝜔𝜔2 is a complex 
eigenvalue



DERIVATION

• Using the anzatz that 𝜗𝜗 = 𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥) and solving the equation for 𝑎𝑎′ 𝑥𝑥 , we 
can arrive at a simplified version of the equation we wish to solve 
numerically

𝑎𝑎′ 𝑥𝑥 = −𝑖𝑖 𝑎𝑎(𝑥𝑥)2 + 𝑉𝑉 𝑥𝑥 − 𝑤𝑤2

• This form solving for 𝑎𝑎𝑎(𝑥𝑥) is easier to work with because it has very 
simple boundary conditions

𝑎𝑎′ −∞ → −𝜔𝜔
𝑎𝑎 +∞ → +𝜔𝜔



THE “SHOOTING” METHOD

• An iterative method for boundary-value problems for 
ordinary differential equations (ODEs)

• The method begins with having a know left and right 
boundary value

• Then, a variant of Newton’s method is used to iterate from 
the left boundary to the right boundary

• At this point, the numerical value is subtracted from the true 
value, at this right boundary, and this is taken as the error 



PROGRAM

• For the numerical method that is used to solve for 𝑎𝑎𝑎(𝑥𝑥) the Runge-
Kutta-4 method was chosen for its reliability and lower error over other 
methods

• Since the 𝜔𝜔 values can be complex, the program will choose test 
values out of a complex disk

• The Poschl-Teller potential is multi-moded, which each higher mode 
being increasingly hard to compute

• Because of computational constrictions, only the first mode will be 
considered here



PROGRAM METHOD

• Since the real and imaginary parts of the ω seemed to be 
approaching the true value at different rates, the decision was made 
to record all of the values of ω that either satisfied low real error or low 
imaginary error

• After gathering these “good” values, they could be graphed against 
their error 

• The “best” ω value, with the lowest error, from the real prediction and 
imaginary prediction could then be averaged into the best guess of 
the true eigenvalue

• In theory, they would both produce the identical ω



GRAPH FOR MODE 1
• These are all values that passed an 

“error filter” of sorts

• The lower the relative error, the 
closer the points lie to the center of 
the graph

• As one can see, two points (one 
real and one imaginary) predicted 
values very close to the true 
solution



DATA FOR MODE 1

Real Prediction 0.8643 – 0.4999i
Imaginary Prediction 0.8683 – 0.4699i
Averaged Prediction 0.8663 – 0.4849i
True Eigenvalue 0.8660 – 0.5000i
Error 0.0003 + 0.0151i

• Thus, this method seems to nearly 
find the real part of the true value, 
but has higher error in the 
imaginary part

• To increase accuracy, a smaller 
step size could be used in order to 
sample a larger range of more 
accurate ω values

• However, more samples takes 
exponentially more time 



INCREASED EFFICIENCY 

• In order to allow for this higher degree of accuracy, I first 
began by testing various command optimizations

• Since the numbers being dealt with are very small, gcc’s 
–ffast-math can be used to simplify a lot of the 
mathematical calculations with little effect on the output

• For numbers this small, the error created by this 
optimization would be on the order of 10−10



INCREASED EFFICIENCY

• There is also the gcc –O optimization
• These -O0, -O1, -O2 and -O3 flags slightly increase memory 

usage and compiling time, but increasingly reduce 
execution time 

• For a medium sized program, the compiling time will not 
cause a noticeable difference



INCREASED EFFICIENCY

• This graph shows the change in 
execution time for each 
combination of the --ffast-math flag 
and -OX flags

• One can see that --fast-math and -
O3 create the most efficient code 

• Using these flags reduced the 
execution time by 440% 



PARALLEL COMPUTING

• Since the program exists in the form of a loop, making this 
loop a parallel region will allow for many value of ω to be 
sampled at the same time

• For this, I have used Stampede2, a supercomputer based in 
Texas and OpenMP (a parallel computing package)

• By allowing multiple computing nodes to access my 
program, Stampede can immediately outpace my laptop 
that has only one open node for computation



PARALLEL COMPUTING
• As one can see, the availably of 

more nodes greatly reduced the 
wall time for the program 

• At around 64 nodes, the 
program’s wall time begins to level 
off, indicting that there is little 
reason to allow more nodes to 
access the program 

• This would prove more costly 
and be of inconsequent gain 



PARALLEL COMPUTING
• Speed-up time shows the relative 

difference in wall time when 
compared to the serial version (1 
node)

• As mentioned in the last slide, it 
seems that at 64 nodes, the program 
has its largest speed-up value 

• This would be the optimum amount 
of nodes to use for this program



FUTURE IMPROVEMENT

• One way to make this program more accurate is to use a 
parallel-shooting method instead of the standard method

• This method decreases propagation error by matching 
points inside and at the boundaries of the function

• Perhaps another value(s) can be found in order to 
employ such a method, especially when moving to a 
more complicated potential



CONCLUSION

• The “shooting” method, with an RK4 scheme, was shown to be able to 
find the eigenvalues of a GW-like wave function

• With command-line optimizations, the program was able to execute 
440% faster than the original version with a negligible change to the 
output

• By making the code work in parallel, the program was able to 
execute even faster, making it possible to use a smaller step size and 
more accurate numbers in the numerical approximations



NEXT STEPS

• One can now explore the higher modes of the Poschl-Teller 
potential because of the more efficient program 

• Then, a true black hole potential can be introduced and 
one can see how well the program can handle a simple, 
real-world case

• Finally, one should be able to use any arbitrary black hole 
potential and obtain the eigenvalue frequency of its QNR
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