
COMPUTATION OF BLACK HOLE
QUASI-NORMAL RINGING

BY THE “SHOOTING” METHOD
Created by Kyle MacKenzie under the advisement of Dr. Gaurav Khanna

QUASI-NORMAL RINGING (QNR)

• If disturbed, black holes “settle” with a very
characteristic gravitational wave (GW) signal, called
quasi-normal ringing (QNR).

• This is typically observed at the late stages of GW
emission from a binary black hole merger.

• Computing these frequencies from theory is
therefore, a very important problem in gravitational
wave physics.

QUASI-NORMAL RINGING (QNR)
• This is an example of a binary

black hole merger’s signal,
borrowed from CERN’s
database

• As one can see, the true
wave function is rather
complicated

• This project will serve as a
precursor for such a
complicated wave with
some calculated
simplifications

DERIVATION

• To use the “shooting” method, one must first have an ODE
and two boundary conditions

• Computation of QNR for the simplest black hole may be
reduced down to solving a simple wave equation with a
potential with radiative boundary conditions

𝜕𝜕2𝜑𝜑
𝜕𝜕𝑡𝑡2

−
𝜕𝜕2𝜑𝜑
𝜕𝜕𝑥𝑥2

+ 𝑉𝑉 𝑥𝑥 𝜑𝜑 = 0

THE POTENTIAL

• For this project, a scalar field is used as a proxy for a true
black hole potential

𝑉𝑉 𝑥𝑥 =
1

𝑐𝑐𝑐𝑐𝑐𝑐𝑐2(𝑥𝑥)

• The potential used is called the Poschl-Teller potential
• This potential is very similar to that of a black hole
• There are exact solutions to check against

DERIVATION

• Using the anzatz that 𝜑𝜑 = 𝜗𝜗(𝑥𝑥)𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, one can remove the
time dependence in the wave equation

𝜕𝜕2𝜗𝜗
𝜕𝜕𝑥𝑥2

− 𝑉𝑉 𝑥𝑥 𝜗𝜗 = −𝜔𝜔2𝜗𝜗

• This is now an eigenvalue problem where 𝜔𝜔2 is a complex
eigenvalue

DERIVATION

• Using the anzatz that 𝜗𝜗 = 𝑒𝑒𝑖𝑖𝑖𝑖(𝑥𝑥) and solving the equation for 𝑎𝑎′ 𝑥𝑥 , we
can arrive at a simplified version of the equation we wish to solve
numerically

𝑎𝑎′ 𝑥𝑥 = −𝑖𝑖 𝑎𝑎(𝑥𝑥)2 + 𝑉𝑉 𝑥𝑥 − 𝑤𝑤2

• This form solving for 𝑎𝑎𝑎(𝑥𝑥) is easier to work with because it has very
simple boundary conditions

𝑎𝑎′ −∞ → −𝜔𝜔
𝑎𝑎 +∞ → +𝜔𝜔

THE “SHOOTING” METHOD

• An iterative method for boundary-value problems for
ordinary differential equations (ODEs)

• The method begins with having a know left and right
boundary value

• Then, a variant of Newton’s method is used to iterate from
the left boundary to the right boundary

• At this point, the numerical value is subtracted from the true
value, at this right boundary, and this is taken as the error

PROGRAM

• For the numerical method that is used to solve for 𝑎𝑎𝑎(𝑥𝑥) the Runge-
Kutta-4 method was chosen for its reliability and lower error over other
methods

• Since the 𝜔𝜔 values can be complex, the program will choose test
values out of a complex disk

• The Poschl-Teller potential is multi-moded, which each higher mode
being increasingly hard to compute

• Because of computational constrictions, only the first mode will be
considered here

PROGRAM METHOD

• Since the real and imaginary parts of the ω seemed to be
approaching the true value at different rates, the decision was made
to record all of the values of ω that either satisfied low real error or low
imaginary error

• After gathering these “good” values, they could be graphed against
their error

• The “best” ω value, with the lowest error, from the real prediction and
imaginary prediction could then be averaged into the best guess of
the true eigenvalue

• In theory, they would both produce the identical ω

GRAPH FOR MODE 1
• These are all values that passed an

“error filter” of sorts

• The lower the relative error, the
closer the points lie to the center of
the graph

• As one can see, two points (one
real and one imaginary) predicted
values very close to the true
solution

DATA FOR MODE 1

Real Prediction 0.8643 – 0.4999i
Imaginary Prediction 0.8683 – 0.4699i
Averaged Prediction 0.8663 – 0.4849i
True Eigenvalue 0.8660 – 0.5000i
Error 0.0003 + 0.0151i

• Thus, this method seems to nearly
find the real part of the true value,
but has higher error in the
imaginary part

• To increase accuracy, a smaller
step size could be used in order to
sample a larger range of more
accurate ω values

• However, more samples takes
exponentially more time

INCREASED EFFICIENCY

• In order to allow for this higher degree of accuracy, I first
began by testing various command optimizations

• Since the numbers being dealt with are very small, gcc’s
–ffast-math can be used to simplify a lot of the
mathematical calculations with little effect on the output

• For numbers this small, the error created by this
optimization would be on the order of 10−10

INCREASED EFFICIENCY

• There is also the gcc –O optimization
• These -O0, -O1, -O2 and -O3 flags slightly increase memory

usage and compiling time, but increasingly reduce
execution time

• For a medium sized program, the compiling time will not
cause a noticeable difference

INCREASED EFFICIENCY

• This graph shows the change in
execution time for each
combination of the --ffast-math flag
and -OX flags

• One can see that --fast-math and -
O3 create the most efficient code

• Using these flags reduced the
execution time by 440%

PARALLEL COMPUTING

• Since the program exists in the form of a loop, making this
loop a parallel region will allow for many value of ω to be
sampled at the same time

• For this, I have used Stampede2, a supercomputer based in
Texas and OpenMP (a parallel computing package)

• By allowing multiple computing nodes to access my
program, Stampede can immediately outpace my laptop
that has only one open node for computation

PARALLEL COMPUTING
• As one can see, the availably of

more nodes greatly reduced the
wall time for the program

• At around 64 nodes, the
program’s wall time begins to level
off, indicting that there is little
reason to allow more nodes to
access the program

• This would prove more costly
and be of inconsequent gain

PARALLEL COMPUTING
• Speed-up time shows the relative

difference in wall time when
compared to the serial version (1
node)

• As mentioned in the last slide, it
seems that at 64 nodes, the program
has its largest speed-up value

• This would be the optimum amount
of nodes to use for this program

FUTURE IMPROVEMENT

• One way to make this program more accurate is to use a
parallel-shooting method instead of the standard method

• This method decreases propagation error by matching
points inside and at the boundaries of the function

• Perhaps another value(s) can be found in order to
employ such a method, especially when moving to a
more complicated potential

CONCLUSION

• The “shooting” method, with an RK4 scheme, was shown to be able to
find the eigenvalues of a GW-like wave function

• With command-line optimizations, the program was able to execute
440% faster than the original version with a negligible change to the
output

• By making the code work in parallel, the program was able to
execute even faster, making it possible to use a smaller step size and
more accurate numbers in the numerical approximations

NEXT STEPS

• One can now explore the higher modes of the Poschl-Teller
potential because of the more efficient program

• Then, a true black hole potential can be introduced and
one can see how well the program can handle a simple,
real-world case

• Finally, one should be able to use any arbitrary black hole
potential and obtain the eigenvalue frequency of its QNR

	Computation of Black Hole Quasi-Normal Ringing �by the “Shooting” Method
	Quasi-Normal Ringing (QNR)
	Quasi-Normal Ringing (QNR)
	Derivation
	The potential
	Derivation
	Derivation
	The “Shooting” Method
	Program
	Program method
	Graph for mode 1
	Data for mode 1
	Increased Efficiency
	Increased Efficiency
	Increased Efficiency
	Parallel Computing
	Parallel Computing
	Parallel Computing
	Future Improvement
	Conclusion
	Next Steps

