

UMD18-01

Vanni Bucci, Ph.D., et al.

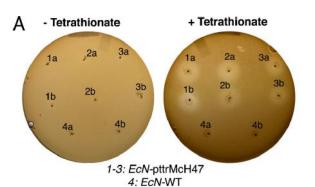
Life Sciences

Inventors:	
Applications:	

intestinal infections by expressing this powerful antimicrobial peptide only when conditions of inflammation are present.

Benefits:

Title:


• Novel approach to treat antibiotic-resistant intestinal infections.

Engineered Probiotic for Inhibition of Enteric Pathogens

- Potentially applicable against many pathogenic microorganisms.
- Features use of a safe, nonpathogenic microbiome microorganism to combat infections.

The invention provides a novel, potentially powerful method for treatment of antibioticresistant intestinal infections. The method involves the use of a microorganism that has been engineered to inducibly express the antimicrobial peptide microcin H47 only under conditions of intestinal inflammation. This modified microorganism can be used as a probiotic to treat

TechnologyUMD 18-01 Medical complications related to the emergence of antibiotic-resistant bacteria
are a major issue in modern healthcare due to the resulting increase in morbidity, mortality,
length of hospitalization and related healthcare costs. Opportunistic pathogens such as
carbapenem-resistant *Klebsiella* species and fluoroquinolone-resistant *Salmonella* species are
among the leading causes of morbidity and mortality worldwide, with drug-resistant
Salmonella alone responsible for more than 100,000 infections in the US every year. The
invention capitalizes on the ability of small antimicrobial peptides called microcins to inhibit
certain pathogens. The invention features microorganisms engineered to detect and utilize
tetrathionate, a known marker of intestinal inflammation, allowing the inducible expression
and secretion of microcin H47 to inhibit the microorganism responsible for the inflammation.
Issued US Patent 11560543

*E. col*i Nissle engineered to inducibly express microcin H47 (spots 1-3) can inhibit growth of *S. typhimurium* in the presence (right) of 1 mM potassium tetrathionate but not in its absence (left). Control wild type *E. col*i are in spots 4a and 4b.

For more information:

Catherine Ives, PhD Intellectual Property Consultant

Office of Technology Commercialization & Ventures (OTCV) Foster Administration Building, #008 University of Massachusetts Dartmouth 285 Old Westport Road North Dartmouth, MA 02747

Email: cives@umassd.edu

