Impact of Sea Level Rise on Future Storm-induced Coastal Inundation

Changsheng Chen

School for Marine Science and Technology,
University of Massachusetts-Dartmouth
Email: c1chen@umassd.edu
Outline

- Sources of storm-induced coastal inundation;
- Observed evidences of sea level rise (SLR) in the New England region;
- Impacts of SLR on future storm-induced coastal inundation:
 - Northeast Coastal Ocean Forecast System (NECOFS);
 - Case study 1: Hurricane;
 - Case study 2: Nor’easter storms.
Super Typhoon Soudelor, August 7, 2015
Overwash of a Seawall (Scituate, MA) During January 2015 Storm

From Tony Mignone at NOAA
Storm-induced Hazards along the New England Coast

Hurricanes/Tropic Storms

Extratropic Storms/Nor’easters

Coastal Inundation
Infrastructure damages
Human safety
Coastal Inundation

- Splashing over
- or overtopping

- Wave runup
- Storm surge
- Tidal elevation
- Total water level

MEDM Lab Marine Ecosystem Dynamics Modeling
Future Challenge: Impacts of the Sea Level Rise

IPCC temperature projection for three emission scenarios (B1, A2 and A1F1). Figure is downloaded from Vermeer and Rahmstorf (2009).
Tidal gauge stations

- Eastport
- Halifax
- Portland
- Boston
- New London
- Newport
- Montauk
- Nantucket
- Woods Hole
- New York
Boston

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean Elevation Projection (m)</th>
<th>SLR (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1927</td>
<td>2.49</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>2.76</td>
<td>0.27</td>
</tr>
<tr>
<td>2100</td>
<td>2.97</td>
<td>0.21</td>
</tr>
</tbody>
</table>

New York

<table>
<thead>
<tr>
<th>Year</th>
<th>Mean Elevation Projection (m)</th>
<th>SLR (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1927</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td>1.88</td>
<td>0.31</td>
</tr>
<tr>
<td>2100</td>
<td>2.12</td>
<td>0.21</td>
</tr>
</tbody>
</table>
Arctic Ocean Sea Ice

Observation

FVCOM

Sept. 1978

Sept. 2007

Sept. 2012
Northeast Coastal Ocean Forecast System (NECOFS)

North American Meso-scale (NAM) Weather Model

Local Weather Model (WRF)

Satellite SST
Buoy Winds
Insolation

Satellite SST, SSH
Buoy or Survey
T,S,U,V

MASS Coastal FVCOM
(up to 10 m)

Regional FVCOM
(GOM-FVCOM: 0.3-15 km)

Surface Wave Model
(FVCOM-SWAVE)

Heat Flux
P-E

Wind Stress
U,V

Wind Stress

Global-FVCOM
(tides, currents, T and S)

River discharges

Groundwater

Mass Bay/Boston Harbor

Hampton River, NH

Saco, ME

Scituate, MA

Assimilation

Inundation Models

BC’s

Storm Surge (hurricanes, Nor’easter)

BC’s

Products:
Weather: winds, air temperature, air humidity, air pressure, heat flux, E-P
Oceans: sea level, currents, T, S, wave heights, wave frequencies, icing
Lands: inundation areas

KEY

Existing Models

Data

Products
Global-FVCOM
(2-50 km)

GOM-FVCOM (0.3-15 km)

Mass-Coastal FVCOM
(10 m-5 km)

Scituate, MA (up to 10 m) Boston Harbor, MA (up to 10 m) Hampton, NH (up to 10 m) Saco Bay (up to 10 m)
The August 19 1991 Hurricane Bob
Differences (meters) with 0.5 m SLR

Significant Wave Height

Surface Elevation
Inundation in the northern region of Boston

Flooded by 0.5-m sea level rise

Hurricane-induced flooding
Flooded by 0.5-m sea level rise

Hurricane-induced flooding

Southern Region of Boston
Scituate, MA

The Test Site: 44013 Tide gauge station
Days (Dec., 2010)

Barometric pressure

Significant wave height

Wind vectors at Scituate Harbor (SH)
Maps of surface wave height (m) and direction (arrows) at Dec. 27 08 GMT
Wave Runup Produced Splashing Discharge

- 0.61 m³/s, ~36%
- 0.53 m³/s, ~18%
- 0.45 m³/s

Dec. 27, 2010
Summary

As a result of the mean sea level rise, for a given same storm as before, the surface wave height could be significant increased, and thus the sea level. We will face a greater threat from the wave runup inundation during hurricanes and nor’easter storms.