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Master Syllabus

Course: PHY 151, Introductory Astronomy
Cluster Requirement: 2A, Science of the Natural World
This University Studies Master Syllabus serves as a guide and standard for all instructors teaching an approved in the University Studies program.  Individual instructors have full academic freedom in teaching their courses, but as a condition of course approval, agree to focus on the outcomes listed below, to cover the identified material, to use these or comparable assignments as part of the course work, and to make available the agreed-upon artifacts for assessment of learning outcomes.

Course Overview: 

Astronomy is the scientific study of the universe, its contents, and its physical processes. PHY 151 charts the historical development of the scientific method, as applied to the ideas, techniques, and apparatus of astronomy, and describes what astronomers know about the universe today. The course is designed for non-science majors with no prior experience in astronomy. Lectures, exams, and class assignments will involve the use of basic mathematics, including scientific notation, algebra, geometry, and simple trigonometry. Each class period is divided into two parts: an illustrated lecture-demonstration, lasting approximately 30 minutes and covering relevant topics in astronomy, followed by a team-based instructional activity from the Astronomy Activity and Laboratory Manual. Completed activities are submitted at the end of the class period for grading. Weather permitting, students are encouraged to attend evening viewing sessions at the campus observatory; dates and times will be announced. PHY 151 is a lead-in to PHY 251, Intermediate Astronomy, a more in-depth introduction to astronomy for non-science majors. 
Learning Outcomes:

Course-Specific Learning Outcomes:
After completing this course, students will have gained:

• a broad view of the history of astronomy and the evolution of scientific ideas (science as a cultural process)

• a cosmic perspective – a broad understanding of the nature, scope and evolution of the Universe, and where the Earth and Solar System fit in.
• a knowledge of crucial astronomical quantities and physical laws.
• an understanding that the same physical laws and processes are valid everywhere in the Universe.
• an understanding of the roles of observations, experiments, theory and mathematical models in science.
• a realization that uncertainty is inevitable in science, but that this does not mean that a given scientific theory is wrong.
• some knowledge of related subjects, such as physics and mathematics.

University Studies Learning Outcomes:
After completing this course, students will be able to: 
• Recount the fundamental concepts and methods in one or more specific fields of science. 
• Explain how the scientific method is used to produce knowledge. 

• Successfully use quantitative information to communicate their understanding of scientific knowledge. 
• Use appropriate scientific knowledge to solve problems.
Examples of Texts and/or Assigned Readings:


• Hirshfeld, Alan. Astronomy Activity and Laboratory Manual. Sudbury, MA: Jones & Bartlett, 2009.

• Strobel, Nick, Astronomy Notes. www.astronomynotes.com (free online).
Example Assignments:
See Appendix A.

Sample Course Outline:
See Appendix B.

Appendix A: Example Assignments

OUTCOMES MAPPING: Each of the following example assignments addresses Cluster 2A Outcomes 1, 2, 3, and 4: through their answers to the assignments, students master specific scientific concepts, and use the scientific method and quantitative reasoning to solve scientific problems and communicate their knowledge of the subject material. An answer key and grading rubric are appended to each assignment. There are twenty such in-class assignments altogether covering a broad range of topics in astronomy. The instructor and a teaching assistant are present to answer students’ questions as they work through each assignment. There are also three tests and five quizzes during the semester.

Activity 7: Aristarchus Measures the Size and Distance of the Moon


In the third century B. C., Greek philosopher-mathematician Aristarchus, from the island of Samos in the Aegean Sea, proposed a bold rearrangement of the heavens. For hundreds of years preceding Aristarchus, Greek philosophers believed that the Earth occupies the hub of the universe, and that the Sun, Moon, planets, and even the star-studded celestial sphere, which was held to enclose the universe, all circle around it. Aristarchus proposed instead that the Sun holds the central position, casting its light symmetrically outward on the other celestial bodies. Ironically, Aristarchus’s prime legacy to science turned out to be something other than his Sun-centered universe, which was largely forgotten until Polish mathematician Nicholas Copernicus re-introduced it some eighteen centuries later. Aristarchus demonstrated for the first time how it was possible, using simple observations and elementary geometry, to measure sizes and distances of celestial bodies. 


The starting point for this activity is the geometry of an arc, or sector of a circle (a “piece of pie”). In Figure 7-1, s is the length of the arc; r is the radius of the arc; and  is the angular width of the arc, that is, how many degrees it spans. These quantities are related by the sector equation: s = (r ) / 57.3, where r and s are expressed in some unit of length and  is expressed in degrees. In astronomical applications, we can use this equation to deduce, say, the actual diameter of a celestial object, if its angular diameter and distance are known. Or, if the equation is rewritten as r = 57.3 s / , we can deduce the distance of a celestial object if its actual diameter and angular diameter are known. It’s the latter form that Aristarchus used to determine the distance to the Moon. 
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1. (a) Hungry? Here, munch on this 30-degree slice of peach pie, whose radius is 5 inches. What length of pie crust do you get? (b) Still hungry? Here’s a 30-degree slice of blueberry pie that gives you 4 inches of crust. What is the radius of this pie?


Aristarchus whisked his consciousness far from the surface of our planet and viewed our Earth-Moon system from “above,” as though hovering in space. In his geometrical mind, he realized how a lunar eclipse might reveal the Moon’s distance from the Earth. He already knew the Moon’s angular diameter in the sky by direct measurement: about a half-degree. So if the eclipse allowed him to determine the Moon’s actual diameter, he could link these two measurements through the sector equation above and thereby compute the Moon’s distance. First, Aristarchus’s assumptions:

• the Moon moves around the Earth at uniform speed in a perfect circle of radius r.

• the Moon takes about 30 days to complete each orbit (called the orbital period, and represented here by the letter T).

• the Sun is sufficiently far away that its rays are nearly parallel at the Earth; thus, the Earth casts into space a cylinder-shaped shadow whose diameter is identical to the Earth’s diameter D. (See Figure 7-2.) As the Moon moves through the Earth’s shadow, a lunar eclipse occurs.
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2. Aristarchus noted that it takes about 3 hours for a point on the Moon – say, a point on its leading edge – to pass entirely through the shadow cast by the Earth. He also knew that the Moon takes 30 days (720 hours) to complete an entire orbit, that is, to pass through an angle of 360 degrees. Therefore, at the Moon, the angular width of the eclipse shadow – the “pie crust,” in our earlier example – is a small fraction of 360 degrees, equal to (3 hours/720 hours) • 360 degrees. Compute the angular width of the eclipse shadow in degrees.

3. If the Moon itself appears half a degree wide in the sky and if the eclipse shadow through which it passes has the width you computed in part 2, what fraction of the eclipse shadow’s width does the Moon occupy? 

4. If, as Aristarchus assumed, the eclipse shadow is everywhere as wide as the Earth, use your answer to part 3 to compute the Moon’s actual diameter, expressed as a fraction of the Earth’s diameter D. For instance, if the Moon is half as wide as the Earth, then its diameter is written as 0.5D.

5. Now that you know the Moon’s angular diameter  and actual diameter s, use the sector equation, r = 57.3 s / , to compute the Moon’s distance r in terms of the Earth’s diameter D. For instance, if the Moon is 10 Earth-diameters away, its distance is written as 10D. It’s okay that your answer has the symbol D in it; the Earth’s diameter had not yet been measured in Aristarchus’s time, so we’ll just leave it as D.

6. Draw a scale-model of the Earth-Moon system according to Aristarchus. That is, on the worksheet, draw a circle representing the Earth and a second circle representing the Moon. These circles must have the proper relative size and separation, as envisioned by Aristarchus. No ruler is needed. For example, if the Moon were half the Earth’s diameter and located 10 Earth-diameters away, your Moon-circle would be half the size of your Earth-circle and would be drawn 10 Earth-circles away. 


In fact, Aristarchus overestimated the Moon’s diameter; the Moon is actually about one-fourth the Earth’s size. And he erred in thinking that the Earth’s eclipse shadow is shaped like a cylinder; rather, it tapers to a point like a cone. Therefore, the Earth’s shadow is narrower at the Moon than Aristarchus had assumed. Modern measurements indicate that the Moon’s distance r is equivalent to about 30 Earth-diameters, or 30D.

7. Draw a revised scale-model of the Earth-Moon system, this one according to modern measurements.


Even though Aristarchus turned out to be wrong, his method is sound. A cosmic distance was measured for the first time. But Aristarchus didn’t stop there. He reached out further into the cosmos, as you will see in the next activity.
ANSWERS:

1. (a) s = (5 x 30)/57.3 = 2.6 inches

    (b) r = (57.3 x 4)/30 = 7.6 inches

2. (3/720) x 360 = 1.5°

3. 1/3

4. s = (1/3)D
5. r = 57.3 x [(1/3)D/0.5] =  38 D
6, 7. The students’ diagrams must show the scaled-down Earth and Moon to their proper relative size (3:1 for Part 6, 4:1 for Part 7) and separation (38 Earth-diameters for Part 6, 30 Earth-diameters for Part 7). 

GRADING RUBRIC: The students’ score is the percentage of correct responses, with partial credit applied, where appropriate.
Activity 11: Isaac Newton and the Moon


The hallmark of a successful scientific theory is how well its predictions stack up against the results of precise observation and experiment. Starting in the mid-1600s, English scientist Isaac Newton considered the nature of the force that holds the solar system together. How is it that the planets hurtle through space at breakneck speed, yet remain invisibly anchored to the Sun? What is the origin of Kepler’s mathematical laws involving the orbits of planets? In Isaac Newton’s conception, the answer to both questions is a force at once familiar and utterly mysterious: gravity. Gravity anchors us to the Earth and plucks an apple from a tree. The very same gravity, Newton insisted, also holds the Moon in its monthly circuit around the Earth.


Newton derived a general mathematical law that described the behavior of gravity. To prove that his proposed law of gravitation was indeed universal – it applied, not just to objects on Earth, but to the gravitational tug between celestial bodies – Newton compared two numbers: (i) the Moon’s orbital acceleration, as predicted by his own gravitational theory; and (ii) the Moon’s orbital acceleration, this time derived from actual observations of the Moon’s movement. If his theory was correct, Newton supposed, these two independent measures of the Moon’s acceleration should agree. First, a brief physics lesson… 

Basics of Acceleration 


Near the Earth’s surface, every freely-falling object speeds up at the same rate: about 10 meters-per-second in velocity for every second the object is falling – abbreviated 10 meters/sec2. In other words, a dropped object has a velocity of 10 meters/sec after the first second, 20 meters/sec after the next second, 30 meters/sec the second after that, and so on, until it hits the ground. Physicists call this uniform increase in velocity the object’s gravitational acceleration. 


The force that accelerates a freely-falling object downward is the mutual gravitational pull between the Earth and the object. (We ignore the effects of air resistance which, in reality, make falling feathers accelerate slower than falling rocks.) Away from the Earth’s surface, where Earth’s gravity is weaker, the gravitational acceleration of freely-falling objects is less than 10 meters/sec2. Here’s Isaac Newton’s question: what is the Earth’s gravitational acceleration very far away from our planet’s surface, say, out at the Moon? And here’s Newton’s answer…

Predicted Acceleration at the Moon


The gravitational force between the Earth and the Moon is given by Newton’s Universal Law of Gravitation:
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[Equation 11-1]

where ME is the mass of the Earth, MM is the mass of the Moon, and r is the separation between the centers (not the surfaces) of the Earth and the Moon. Newton’s Second Law of Motion, which relates gravitational acceleration and gravitational force, can also be applied to the Moon: 
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[Equation 11-2]


Substituting the expression for the force F from Equation 11-1 into Equation 11-2 gives the gravitational acceleration of the Earth at the Moon (see how the Moon’s mass cancels out from the equation):
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Equations 11-1 and 11-3 indicate that, in mathematical terms, both gravitational force and gravitational acceleration diminish with the square of the separation r. Thus, Newton reasoned, if the gravitational acceleration a is about 10 meters/sec2 at the Earth’s surface, then at 2 times the Earth’s radius, the acceleration must be 
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 x 10 meters/sec2; at 3 times the Earth’s radius, the acceleration is 
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 x 10 meters/sec2; and so on.

1. In Newton’s time, the distance to the Moon’s center was well established at about 60 times the Earth’s radius. Based on the examples above, compute the Earth’s gravitational acceleration a at the Moon’s center. It’s true that the acceleration will be a bit larger on the near side of the Moon and a bit smaller on the far side, but we’ll ignore that. Express your answer to three decimal places.


Your answer to part 1 is the predicted acceleration at the Moon according to Newton’s theory of gravity. Newton needed to compare this prediction to the actual acceleration computed from direct observations of the Moon’s movement. Time for another physics lesson…

Acceleration in Orbit


From basic physics, the acceleration of any object moving in a circle can be computed from the object’s velocity v, in meters/second, and the radius r of the circle, in meters, according to the equation: 
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[Equation 11-4]


Newton’s plan was to substitute into Equation 11-4 the Moon’s velocity for v and the radius of the Moon’s orbit for r, then compare the resultant acceleration a to that predicted by his theory. But he couldn’t directly measure the Moon’s velocity. Instead he estimated the velocity from quantities he could measure.


The velocity of an object is a measure of how much distance the object travels during a specified time interval. Isaac Newton knew that the Moon completes an orbit every 27.32 days. Dividing the distance the Moon travels – the circumference of its orbit – by the time interval to cover that distance – the Moon’s orbital period – yields the very quantity Newton sought to “plug into” Equation 11-4: the Moon’s velocity. Now you do it.

2. Compute the circumference C of the Moon’s orbit, where C = 2r. The radius r of the Moon’s orbit is about 3.84 x 108 meters. (Scientists routinely use powers-of-ten notation to write large numbers. And there are plenty of large numbers in astronomy! Check the Appendix for a tutorial on powers-of-ten notation.)

3. Convert the orbital period 27.32 days into units of seconds.

4. Divide the orbital circumference from part 2 by the orbital period from part 3. Your result is the Moon’s velocity v in the required units of meters per second.

5. In Equation 11-4, substitute the velocity v from part 4 and the radius r of the Moon’s orbit given above. This is the actual acceleration of the Moon.

Was Newton Right?

6. If you performed the calculations correctly, the predicted acceleration from Newton’s theory of gravity in step 1 should be the same as the actual acceleration from step 5. Do these values agree? If they do not agree exactly, does that necessarily imply that Newton’s theory of gravity is wrong? Explain.


From the result of this analysis and others, Isaac Newton was confident that his law of gravitation was indeed universal – that the Earth’s gravity holds the Moon in its orbit and, by extension, that the Sun’s gravity holds the planets in their orbits. The heliocentric cosmos of Copernicus and Kepler had now truly come of age. 

EXTRA CREDIT (for the truly adventurous)


Repeat steps 1 through 6 to confirm that the Sun’s gravity holds the Earth in its orbit. In other words, compute the Sun’s gravitational acceleration at the Earth and compare that number to the Earth’s actual acceleration based on its observed motion. You are given: 

• the gravitational acceleration at the Sun’s surface is about 28 times greater than the Earth’s surface acceleration: 280 meters/sec2.

• the radius of the Earth’s orbit is about 217 times the radius of the Sun itself. 

• the radius of the Earth’s orbit (1 AU) is approximately 1.5 x 1011 meters.

• there are about 3.15 x 107 seconds in a year.

You must show your work neatly for all steps; no extra credit is given for answers only.
ANSWERS:

1. apredicted = (1/602) x 10 meters/sec2 = 0.003 meters/sec2
2. C = 2.41 x 109 meters

3. P = 2.36 x 106 sec

4. v = 1020 meters/sec 

5. aactual = 0.003 meters/sec2 

6. The predicted and actual accelerations do agree within rounding uncertainties. Newton’s theory of gravity is supported by the observed data. 

Extra Credit Answers:

  apredicted = (1/2172) x 280 meters/sec2 = 0.00595 meters/sec2
  C = 9.42 x 1011 meters

  P = 3.15 x 107 sec

  v = 30,000 meters/sec = 30 km/sec

  aactual = 0.00596 meters/sec2 

  The predicted and actual accelerations do agree within rounding uncertainties. Once again, Newton’s theory of gravity is supported by the observed data.
GRADING RUBRIC: The students’ score is the percentage of correct responses, with partial credit applied, where appropriate.

Activity 18: Hubble’s Law – in the Kitchen and in the Universe


Until the 1920s, it was generally believed that the universe was infinite and unchanging. However, some physicists began to realize that space itself is more than mere emtpiness; space has a definable structure and a shape. And that shape arises from the presence of matter, or equivalently, by matter’s attendant force: gravity. In this revised view, a static universe is highly improbable. More likely is a universe that is either expanding or contracting. Physicists proposed observations astronomers could make of the motions of galaxies that would reveal the actual state of the universe. During the 1920s, there was only one telescope in the world powerful enough to conduct the necessary measurements of faint galaxies: the 100-inch reflector on Mount Wilson in California. And Edwin Hubble, who had already proven that spiral nebulae are galaxies external to our Milky Way, felt confident that he could tackle this difficult task. 


To understand how Hubble intended to prove whether the universe is static or in some state of motion, let’s begin with an analogy: the universe as a loaf of raisin bread. The left part of Figure 18-1 shows a loaf of unbaked raisin bread, with the positions of 6 raisins shown, labeled A through F. The current distance of each raisin from raisin A is also indicated. The unit of measurement doesn’t matter; let’s assume it’s centimeters, abbreviated cm. To the right is the same loaf after it has baked and risen in the oven for 1 hour. As you see, the loaf has expanded uniformly in every dimension to twice its original size; that is, every raisin-to-raisin distance in the original loaf is now twice as large as it was before. Call this increase in overall scale the expansion factor.
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[Figure 18-1]

Before baking (1 hour ago)




    Now (after baking)
1. What is the distance of raisin B from raisin A now? (Do not use a ruler to measure the distance; use the number and the expansion factor given above to formulate your measurement scale.) Record your answer on the worksheet. Then write each distance alongside its corresponding arrow in the right-hand part of Figure 18-1. Repeat for raisins C through F.

2. During the hour of baking, each raisin moved from its original position to a new position. The “velocity” of each raisin can be computed by taking the distance the raisin moved during baking and dividing by the time interval of 1 hour. Record the velocity of each raisin on the worksheet.

3. Plot your distance and velocity data from parts 1 and 2 on the axes given on the worksheet [See Figure 18-2]. 

4. Do your data points lie at least approximately along a straight line? If so, draw the straight line that best “fits” the data, that is, that has about as many data points on one side of the line as on the other. If your points do not lie approximately along a line, check your data!

5. In the baking process, the raisin bread underwent a uniform expansion. When the velocities of the raisins are plotted against the corresponding distances of the raisins, a straight-line relationship appears in the graph. Conversely, the straight-line relationship between the raisins’ velocities and distances reveals a situation of uniform expansion. Would a straight-line relationship have appeared if you had plotted the graph based on distance and velocity measurements carried out from a different raisin than raisin A? Explain your answer.

6. The expansion rate of the raisin bread is represented by the steepness, or slope, of the straight line in the graph you drew in part 3. The slope can be computed from the measurements of any two raisins, say, raisins B and F, as follows:

slope = (velocity of raisin F – velocity of raisin B)/(distance of raisin F now – distance of raisin B now)
Compute the slope of the line in the graph from part 3 and record your answer on the worksheet.


Since the raisin bread is a stand-in for our universe, you can test for a uniform expansion of the universe by analogous means, in other words, by measuring and plotting the velocities and distances of galaxies, as Edwin Hubble did in the 1920s. The accompanying table contains the relevant data for several representative galaxies. The term “recession velocity” is used here because, with few exceptions, galaxies are moving away from us, that is, they are receding. 

	Galaxy name

	Distance

(in millions of parsecs)
	Recession Velocity

(in kilometers per second)

	Virgo
	    19
	  1,200

	Ursa Major
	  300
	15,000

	Corona Borealis
	  430
	21,600

	Bootes
	  770
	39,300

	Hydra
	1,200
	61,200


7. Plot the distance-velocity data for the above galaxies on the axes on the worksheet. [See Figure 18-3] Sketch the straight line that best “fits” the data points. The line does not have to pass through all the points.

8. As you should see, when the velocities of galaxies are plotted against the corresponding distances of galaxies, a straight-line relationship appears, an outcome astronomers have named Hubble’s law. (a) Drawing a parallel to the raisin bread analogy, what does Hubble’s law imply about the overall state of the universe? (b) Express Hubble’s law in words, starting with the phrase, “The farther a galaxy is from us...” Be specific. 

9. The expansion rate of the universe, called the Hubble constant, is determined by computing the slope of Hubble’s law. Adapt the procedure you used in part 6 for the raisin bread to find the value of Hubble’s constant.

10. Would a straight-line, Hubble’s-law relationship appear if an alien-Hubble had plotted the graph based on velocity and distance measurements carried out from another galaxy? Explain.

ANSWERS:

1. B: 4 cm    C: 8 cm     D: 12 cm     E: 16 cm     F: 20 cm

2. B: 2 cm/hour    C: 4 cm/hour     D: 6 cm/hour     E: 8 cm/hour     F: 10 cm/hour

3.
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4. Data points should lie along a line, as indicated in the figure above.

5. Yes, a straight-line relationship would appear from any raisin, because the raisins are moving apart from each other. Any of the raisins would appear to be at the center of expansion. 

6. Slope = 0.5

7.
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8. (a) The universe is expanding.

    (b) The farther a galaxy is from us, the faster it is moving away (or receding) from us.

9. Computing the slope from any two of the data points, Hubble constant = 50

10. Yes, Hubble’s law would appear from any galaxy, because the galaxies are moving apart from each other.

GRADING RUBRIC: The students’ score is the percentage of correct responses, with partial credit applied, where appropriate.

Appendix B: Sample Course Outline:
PHY 151, Fall 2011: Course Outline (Dates subject to change)

Reading assignments in Strobel’s e-text (www.astronomynotes.com) are listed at the class website.

Date

Topic



PART I: Skywatchers of Antiquity

Th      9/8
Introduction

T      9/13
Celestial sphere, constellations, prehistoric astronomy

Th    9/15
Prehistoric astronomy, the gnomon 

T      9/20
Sky cycles: daily, monthly, seasonal, annual


Th    9/22
Sky cycles: daily, monthly, seasonal, annual





T      9/27
Ancient Greek science (Aristotle)




Th    9/29
The Earth-centered cosmos (Ptolemy)



PART II: The Renaissance Revolution (16th to 18th Century)

T      10/4
The Sun-centered cosmos (Nicolaus Copernicus)

Th    10/6
The Sun-centered cosmos (Nicolaus Copernicus)

T    10/11
No class, follow Monday class schedule
Th  10/13
>>>TEST 1<<<
T    10/18
Planetary motion (Tycho Brahe)

Th  10/20
The laws of orbital motion (Johannes Kepler)
T    10/25
The laws of motion and gravity (Isaac Newton)

Th  10/27 
Introduction of the telescope (Galileo) 

T      11/1
The advent of precision astronomy: stellar aberration and stellar parallax



PART III: The Great Transformation – From Astronomy to Astrophysics (19th to 20th Century)

Th    11/3
Principles of light and other forms of electromagnetic energy

T      11/8 
Principles of light and other forms of electromagnetic energy

Th  11/10
Spectra and the structure of atoms

T    11/15
Spectra and the structure of atoms
 
Th  11/17
>>>TEST 2<<<
T    11/22
Celestial photography, spectroscopy
Th  11/24
No class, Thanksgiving vacation

T    11/29 
A universe of galaxies (Edwin Hubble)

Th    12/1
Cosmology: the expanding universe and the Big Bang (Edwin Hubble)
T      12/6 
Cosmology: the expanding universe and the Big Bang (Edwin Hubble)

Th    12/8 
 Cosmic microwaves; space and time in the universe

T     12/13
Dark matter & dark energy in the universe

Th   12/15
>>>TEST 3<<<
s
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