faculty

Adriano Marzullo

Associate Teaching Professor

Mathematics

Contact

508-999-8323

bnbs{vmmpAvnbtte/fev

Liberal Arts 396I

Education

2010University of Missouri - ColumbiaPhD
2007University ofMissouri - ColumbiaMaster in Applied Mathematics

Teaching

  • Calculus Sequence
  • Ordinary Differential Equations
  • Discrete Mathematics
  • Probability Theory

Teaching

Programs

Teaching

Courses

An intensive study of the techniques and applications of integration and infinite series. Topics include: techniques and applications of integration, improper integrals, infinite series (including convergence tests, the interval of convergence for power series, and Taylor series), an introduction to vectors, and parametric and polar equations. This is the second semester of the standard calculus sequence designed for Physics and Engineering majors in the integrated engineering curriculum. With your advisor's consent, this course may be repeated as MTH 152. This course fulfills the general education core requirements for Physics and Engineering majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.

An intensive study of the techniques and applications of integration and infinite series. Topics include: techniques and applications of integration, improper integrals, infinite series (including convergence tests, the interval of convergence for power series, and Taylor series), an introduction to vectors, and parametric and polar equations. This is the second semester of the standard calculus sequence designed for Physics and Engineering majors in the integrated engineering curriculum. With your advisor's consent, this course may be repeated as MTH 152. This course fulfills the general education core requirements for Physics and Engineering majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.

An intensive study of the techniques and applications of integration and infinite series. Topics include: techniques and applications of integration, improper integrals, infinite series (including convergence tests, the interval of convergence for power series, and Taylor series), an introduction to vectors, and parametric and polar equations. This is the second semester of the standard calculus sequence designed for Physics and Engineering majors in the integrated engineering curriculum. With your advisor's consent, this course may be repeated as MTH 152. This course fulfills the general education core requirements for Physics and Engineering majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.

An intensive study of the techniques and applications of integration and infinite series. Topics include: techniques and applications of integration, improper integrals, infinite series (including convergence tests, the interval of convergence for power series, and Taylor series), an introduction to vectors, and parametric and polar equations. This is the second semester of the standard calculus sequence designed for Physics and Engineering majors in the integrated engineering curriculum. With your advisor's consent, this course may be repeated as MTH 152. This course fulfills the general education core requirements for Physics and Engineering majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.

An intensive study of the techniques and applications of integration and infinite series. Topics include: techniques and applications of integration, improper integrals, infinite series (including convergence tests, the interval of convergence for power series, and Taylor series), an introduction to vectors, and parametric and polar equations. This is the second semester of the standard calculus sequence designed for Physics and Engineering majors in the integrated engineering curriculum. With your advisor's consent, this course may be repeated as MTH 152. This course fulfills the general education core requirements for Physics and Engineering majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.

An intensive study of the techniques and applications of integration and infinite series. Topics include: techniques and applications of integration, improper integrals, infinite series (including convergence tests, the interval of convergence for power series, and Taylor series), an introduction to vectors, and parametric and polar equations. This is the second semester of the standard calculus sequence designed for Physics and Engineering majors in the integrated engineering curriculum. With your advisor's consent, this course may be repeated as MTH 152. This course fulfills the general education core requirements for Physics and Engineering majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.

An introduction to mathematical reasoning, mathematical logic, and methods of proof. Topics include: properties of numbers, elementary counting methods, discrete structures, Boolean algebra, introduction to directed and undirected graphs, methods of proof, and applications in mathematics and computer science. This is the first semester of a discrete mathematics sequence designed for Mathematics, Computer and Information Sciences majors. This course fulfills the general education core requirements for Mathematics, Computer and Information Sciences majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.

An introduction to mathematical reasoning, mathematical logic, and methods of proof. Topics include: properties of numbers, elementary counting methods, discrete structures, Boolean algebra, introduction to directed and undirected graphs, methods of proof, and applications in mathematics and computer science. This is the first semester of a discrete mathematics sequence designed for Mathematics, Computer and Information Sciences majors. This course fulfills the general education core requirements for Mathematics, Computer and Information Sciences majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.

An introduction to ordinary differential equations and their analysis. Topics cover first order linear and nonlinear ordinary differential equations, second order and higher order homogeneous and nonhomogeneous linear differential equations, the linear system of ordinary differential equations, qualitative analysis, numerical solutions, series solutions.

An introduction to multivariable and vector calculus. This is the third and the final semester of the Calculus sequence. Topics cover 3-D analytical geometry, partial derivatives, directional derivatives, gradient, applications, multiple integrals, parameterized curves and surfaces, vector fields, line integrals and Green theorem, flux, and divergence, Stokes¿ and the divergence theorems. MTH 213 can be replaced by MTH 211.

Teaching

Online and Continuing Education Courses

An introduction to the main concepts and techniques of college algebra. Topics include: linear, quadratic, exponential and logarithmic functions, as well as modeling of data using functions. This is the first semester of the college math sequence designed for students interested in Biology and Life Sciences. This course fulfills the general education core requirements for Biology and Life Sciences majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.
Register for this course.

An intensive study of differential calculus and its applications, and an introduction to integrals, Topics include: limits, continuity, indeterminate forms, differentiation and integration of algebraic and transcendental functions, implicit and logarithmic differentiation, and applications to science and engineering. This is the first semester of the standard calculus sequence designed for students interested in Mathematics, Physics, Chemistry, Engineering and Mathematical/Computational Biology. This course fulfills the general education core requirements for Mathematics, Physics, Chemistry, Engineering and Mathematical/Computational Biology majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.
Register for this course.

A study of modern mathematics (excluding calculus) employed in business. Topics include: functions and linear models, systems of linear equations, linear programming, mathematics of finance, sets and counting, and basic probability and statistics. This course is the required math course for Business majors. This course fulfills the general education requirements for Business majors who matriculated prior to Fall 2012 and has been approved by University Studies Curriculum for students matriculating in Fall 2012 or later.
Register for this course.

Research

Research interests

  • Commutative algebra
  • Arithmetic combinatorics
  • Combinatorial geometry
  • mathematics education

Select publications

  • Adriano Marzullo (2013).
    On the Periodicity of the First Betti Number of the Semigroup Rings under Translations
    Journal of the Ramanujan Mathematical Society, Soc. 28, N, 195 − 212.
  • Jeremy Chapman, Adriano Marzullo (2015).
    On rapid generation of SL2(Zq)
    Online Journal of Analytic Combinatorics, Issue 10