Skip to main content.

The lab facilities in UMassD's Mechanical Engineering Department are one of our best features. Students actively participate in labs in virtually every area of mechanical engineering. Our labs are carefully designed so that every student participates actively; no one is a spectator.

Today, manufacturing jobs are shifting from hands on the manufactured products to hands on the robots that manufacture those products. Mechanical engineers design, install, program, maintain, and repair highly complex and advanced robotic systems. The future looks bright for engineers skilled in robot technology.

Robotics Lab

Robots are increasingly used in many areas of manufacturing and in many specialized applications in society—or in space. Robots, for example, can work 24/7 for weeks without taking a break. Moreover, robots are ideal for tasks that may be hazardous for humans, such as spray painting, welding, working with dangerous materials, and similar requirements. They excel at repetitive and tedious tasks and those that require extreme dexterity or strength. Robots are also essential for demanding tasks, such as searching for survivors in confined areas after a disaster or retrieving and removing a suspected bomb. Specialized robotic machines have explored the deepest parts of the ocean and crawled across the landscapes of Mars. Medical researchers are also experimenting with robots for specialized surgery.

Student access to the lab

Students, using their ID cards, have 24/7 access to our robotics lab, allowing them to complete experiments and assignments at times that best suit their busy schedules, including evenings and weekends. All students enrolled in the Robotics course have lab access for the duration of the semester and can gain access at other times for special projects.

The lab features four new computer-controlled robots with custom software, which helps students undertake challenging experiments that complement their classroom assignments. The lab is a senior-level environment that is not chaperoned, so students are expected to demonstrate the best behavior on their own. This lab has relatively few safety restrictions.

Systems Design & Control Lab

Students design and build hydraulic/pneumatic control systems to respond to different but typical constraints and requirements found in various manufacturing, dynamic, and functional situations. These might, for example, be controlling fluid flow rate, speed, and force in a manufacturing factory. In most cases, the emphasis will be on designing and implementing a control system that is fully automatic and requires no human involvement.

Fluids Lab

In the lab, students encounter three experiments that are at the core of an engineering introduction to fluid mechanics.

  • Venturi apparatus: In this experiment, students gain an understanding of velocity and pressure gradients by virtue of moving liquid in a convergent-divergent conduit. The Venturi principle is central to the operation of a carburetor, which most mechanical engineering students understand, and the design of flowmeters. The Venturi principle makes use of the Bernoulli effect, which is applicable to internal and external flows, for example, airflow moving around wings to keep passenger planes in the air (as long as they move).
  • Jet impact: In this experiment, students study the forces created by the impact of a water jet against flat and hemispherical vanes. In a later course, students will revisit the vane shape design for efficient power generation from a turbine.
  • Pipe friction: In this experiment, students learn to control the flow of a fluid through a long, narrow pipe using their understanding of the Reynolds Number. This number is a characteristic measure of flow and differentiates between laminar flow and turbulent flow. Laminar flow is smooth and "unruffled," and resembles the way a telescoping antenna is extended. Turbulent flow is rough and scrambled, characterized by twisting, turning, and tumbling as in a fast-moving stream. The flow structures and frictional losses are markedly different between these two regimes of flow.

Thermal Systems Lab

The senior-level course draws heavily on mathematical descriptions of thermal processes and requires a firm grasp of the underlying physics of these systems and chemistry of reactions. Students explore thermal phenomena in four lab experiments:

  • Transient Open System: teaches the basics of conservation of energy, one of the fundamental principles in thermodynamics. Students experiment with different quantities of water and varying temperatures and study the total energy of the system.
  • Air Impulse Turbine: examines the work produced and measured from a small, air-driven turbine. Students measure the pressure, flow, and temperature of the supply air and the temperature of the discharge air to calculate the theoretical change of internal energy. Using a brake dynamometer, they then measure the actual power produced by the turbine and compare these values.
  • Refrigeration: demonstrates the conversion of energy or work—in this case, the electric power required by a compressor—to the difference in temperature produces and the BTUs of heat conveyed from the "cold" side to the "hot" side.
  • Bomb Calorimeter: calls upon students to use their chemistry knowledge to examine the energy produced by an exothermic reaction. Students use precision instrumentation to characterize the energy produced by combustion reactions of known and unknown fuel samples in an oxygen atmosphere.

Mechanics of Materials Lab

Students experiment with and study tensile forces; torsional or twisting forces; and bending forces, such as found in a cantilevered beam. Examples of these forces are all around us. Tensile forces are found in elevator cables; torsional forces are found in drive shafts and axle shafts; and bending forces are found in structural designs, such as unsupported balconies that protrude from a building. Mechanical engineers are critically involved with the design of these components, many having significant safety implications.

Even more than the physical design, the mechanical engineer must consider the physical properties of the materials to ensure safety and functionality. This lab explores the mechanical properties of various materials, such as polyethylene, nylon, carbon, aluminum, steel—and sometimes even wood—and explores their suitability for unique applications. This lab uses materials testing systems along with strain gauge sensors to measure the stress and deformation of the test specimens. The measured information will be used to determine material properties, such as stiffness, strength, and ductility. Knowing these properties is essential in the design process used in junior level course of Design of Machine Elements (MNE 381) and senior design courses (MNE 497 and MNE 498).

Materials Science Lab

The lab experiments expose students to mechanical strength and hardness of various steel alloys and non-ferrous metals (aluminum, copper, brass) and various methods to change the mechanical properties, such as heat-treating and work hardening. Students also learn about the effect that the crystalline structure of metallic and synthetic materials has on their mechanical properties.

The lab features metallurgical microscopes, including a video microscope with analysis software and wall-mounted display monitor. In addition, students learn about hardness using Rockwell hardness testers and learn to etch and polish metal samples to reveal the grain structures. Doing this, students then correlate the grain structures to the mechanical properties.

Design for Manufacturing Lab

Working in teams, students make a multi-component product from raw stock using a band saw, milling machine, lathe, drill press, CNC machines, taps and dies, common hand tools, and basic gauges for dimensional quality inspection. We stress that this lab is not to train students to become machinists. Instead, the lab exposes mechanical engineering students to the critical need to produce clear, concise, and accurate designs for parts that can be manufactured effectively, precisely, economically, and quickly. This lab focuses on the importance of strong design skills in a successful engineering career.

In addition to gaining experience with conventional machining operations, students can use 3D printing and laser cutting and engraving to enhance their product designs. Students also learn the most efficient way to convey their design goals to machinists and manufacturing personnel both by using properly dimensioned machine drawings and by learning correct terminology for verbal descriptions.

Computer Lab

The computer lab is restricted but open to all mechanical engineering students, including graduate students, faculty, and staff on a 24/7 basis. 

With more than 30 computers and access to a wide array of specialized software, most course instructors use this lab resource. Many instructors who have courses that include physical labs also assign computer lab exercises. Some instructors reserve the lab for training sessions so students can benefit from a structured, organized introduction to complex applications.

Senior Design Project Lab

No one course in the curriculum teaches design; rather, all courses include teaching components that emphasize the design aspects of the specific material. Students must bring the lessons from their coursework to bear on the specific project and seek additional knowledge and guidance from technical advisors, usually faculty.

The Senior Lab gives the student teams a place to conduct experiments and to work on their prototypes. The lab also provides a secure and safe space, so their interim work can be left undisturbed.

The Senior Capstone Project is an achievement that is a source of pride to every student, can be included in the résumé, and can be the source of a meaningful discussion during a job interview. Beyond earning a grade and learning how to conduct a genuine "hands-on" engineering project, the capstone experience can be a valuable asset for securing that first professional position.


UMass Dartmouth Virtual Tour

Visit us virtually: There’s nothing like being on campus. But, for now, take a virtual tour of UMass Dartmouth.
Go to virtual tour