Caiwei Shen, PhD

Assistant Professor

Mechanical Engineering

508-999-8449

^nc`i-;ph\nn_)`_p

Textiles 211


Education

2018University of California at BerkeleyPhD
2013Tsinghua UniversityMS
2010Tsinghua UniversityBS

Teaching

  • Materials Science

Teaching

Programs

Teaching

Courses

Introduction to advanced materials, their properties, structures, modeling and applications in different areas. The materials include metals, ceramics, polymers, composites, semiconductors, nanomaterials, biomimetic materials, smart materials and cellular materials. Emphases are on the principles of chemical kinetics, bonding, molecular mechanics, quantum mechanics, electronic properties, surfaces and boundaries. Special attention will be given to novel materials applications in electrical, electronic, optical, mechanical, biomedical and civil engineering.

Introduction to advanced materials, their properties, structures, modeling and applications in different areas. The materials include metals, ceramics, polymers, composites, semiconductors, nanomaterials, biomimetic materials, smart materials and cellular materials. Emphases are on the principles of chemical kinetics, bonding, molecular mechanics, quantum mechanics, electronic properties, surfaces and boundaries. Special attention will be given to novel materials applications in electrical, electronic, optical, mechanical, biomedical and civil engineering.

The relation between the atomic or micro structure of engineering materials and their properties. Structures of metals, ceramics, polymers and composites are introduced. Experiments on equilibrium diagrams, metallographic structures, property changes of metals are included.

The relation between the atomic or micro structure of engineering materials and their properties. Structures of metals, ceramics, polymers and composites are introduced. Experiments on equilibrium diagrams, metallographic structures, property changes of metals are included.

The relation between the atomic or micro structure of engineering materials and their properties. Structures of metals, ceramics, polymers and composites are introduced. Experiments on equilibrium diagrams, metallographic structures, property changes of metals are included.

The relation between the atomic or micro structure of engineering materials and their properties. Structures of metals, ceramics, polymers and composites are introduced. Experiments on equilibrium diagrams, metallographic structures, property changes of metals are included.

The relation between the atomic or micro structure of engineering materials and their properties. Structures of metals, ceramics, polymers and composites are introduced. Experiments on equilibrium diagrams, metallographic structures, property changes of metals are included.

The relation between the atomic or micro structure of engineering materials and their properties. Structures of metals, ceramics, polymers and composites are introduced. Experiments on equilibrium diagrams, metallographic structures, property changes of metals are included.

The relation between the atomic or micro structure of engineering materials and their properties. Structures of metals, ceramics, polymers and composites are introduced. Experiments on equilibrium diagrams, metallographic structures, property changes of metals are included.

The relation between the atomic or micro structure of engineering materials and their properties. Structures of metals, ceramics, polymers and composites are introduced. Experiments on equilibrium diagrams, metallographic structures, property changes of metals are included.

Research

Research Interests

  • Multifunctional composites
  • Energy storage materials
  • Nanomaterials
  • Sensors
  • Electrochemistry

Dr. Caiwei Shen received the B.S. degree in electronic engineering and the M.S. degree in microelectronics from Tsinghua University in 2010 and 2013, respectively. He received the Ph.D. degree in mechanical engineering from University of California at Berkeley in 2018. He joined the Mechanical Engineering department at University of Massachusetts Dartmouth as assistant professor in the same year. He is teaching materials science courses for both undergraduate and graduate students. His research focuses on materials and technologies for energy-related applications and various sensors and actuators. He is currently interested in developing flexible and wearable supercapacitors and multifunctional structural energy storage devices. He is also interested in the synthesis of nanomaterials and the development of biomimetic or bio-related sensors and actuators.

External links

Request edits to your profile