David Rancour, PhD
Associate Professor
Electrical & Computer Engineering
Contact
508-999-8466
508-999-8489
bp_lamsp>sk_qqb,cbs
Science & Engineering 214C
Education
1988 | Purdue University | PhD in Electrical Engineering |
1982 | Northeastern University | MS in Electrical Engineering |
1978 | University of Vermont | BS in Electrical Engineering |
Teaching
Programs
Programs
- Computer Engineering BS, BS/MS
- Computer Engineering Cybersecurity
- Computer Engineering MS
- Electrical Engineering BS, BS/MS
- Electrical Engineering MS
- Electrical Engineering PhD
Teaching
Courses
Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.
Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.
Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.
Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.
Fundamentals of solid-state electronic devices and the application of these devices to the design of digital circuits. Among the topics covered are MOS and bipolar junction transistors, logic gates and CMOS logic design. Focus is on the design of logic circuits through solving design-oriented problems and the design, implementation, and testing of logic circuits by means of computer simulation software. The course has an integrated laboratory and, in addition, contains a component designed to increase awareness of the dynamic nature of the field.
Introduction to design of Very Large Scale Integrated Circuits (VLSI), taught at the transistor level. Computer tools are used to create and simulate integrated circuit layouts. Levels of design automation covered include Full Custom layout, Schematic Driven layout, Standard Cells and fully automated synthesis of HDL code. Students are required to complete a project that can be submitted for fabrication.
Design of Very Large Scale Integrated Circuits (VLSI), taught at the transistor level. Computer tools are used to create and simulate integrated circuit layouts. Levels of design automation covered include Full Custom layout, Schematic Driven layout, Standard Cells and fully automated synthesis of HDL code. Required readings from the current literature lead to a formal written report on recent developments in VLSI. Students are required to complete and present at least one project. Some designs may be fabricated.
Research
Research Interests
- Quantum Mechanics
- Solid State Devices
- VLSI
Dr. David P. Rancour is Associate Professor of Electrical Engineering at the University of Massachusetts Dartmouth. He has a B.S. in Electrical Engineering (Computer Engineering option) from the University of Vermont, an M.S. in Electrical Engineering (E/M fields and Digital Signal Processing) from Northeastern University, and a Ph.D. in Electrical Engineering (Solid State Devices & Materials) from Purdue University.
Dr. Rancour’s research interests have centered on defects in semiconductors. He has recently developed a theoretical model for a new defect characterization technique. Computer simulations show the new method to be more than 1000 times more sensitive than the standard technique. He has investigated defects in Gallium Arsenide epitaxial thin films, and has served as a consultant to M/A-COM, Inc., Burlington Semiconductor Operations, conducting defect characterization experiments on silicon PIN diodes.
As a United States Air Force officer, Dr. Rancour managed the engineering portions of an Air Force procurement contract for a ground based radar system. He was responsible for controls/displays and computer hardware. He also assisted in the design, fabrication, and testing of a TTL-based Optical Mark Reader for an Air Force research laboratory. Dr. Rancour has designed LCD fuel gauge display layouts for Simmonds Precision, and he has fabricated and tested a TTL-based wafer stepper interface for IBM.
Dr. Rancour is a member of the Institute of Electrical and Electronics Engineers, Electron Devices Society.