faculty
Vijaya Chalivendra, PhD
Professor
Mechanical Engineering
Research website
Contact
508-910-6572
xejcnkxgpftcBwocuuf0gfw
Textiles 209
Education
| 2003 | University of Rhode Island | PhD in Mechanical Engineering & Applied Mechanics |
| 1997 | Sri Venkateswara University, India | MS in Mechanical Engineering |
| 1993 | Sri Venkateswara University, India | BS in Mechanical Engineering |
Teaching
- Mechanics of Materials
- Advanced Mechanics of Materials
- Continuum Mechanics
- Fracture Mechanics
Teaching
Programs
Programs
Teaching
Courses
A team-based learning experience that gives students the opportunity to synthesize prerequisite course material and to conduct real-world analytics projects using large data sets of diverse types and sources. Students work in independent teams to design, implement, and evaluate an appropriate data integration, analysis, and display system. Oral and written reports and ethical aspects are highlighted.
Investigations of a fundamental and/or applied nature representing an original contribution to the scholarly research literature of the field. PhD dissertations are often published in refereed journals or presented at major conferences. A written dissertation must be completed in accordance with the rules of the Graduate School and the College of Engineering. Admission to the course is based on successful completion of the PhD comprehensive examination and submission of a formal proposal endorsed by the student's graduate committee and submitted to the EAS Graduate Program Director.
Material behavior and the concepts of equilibrium and compatibility of deformation. Torsion of bars is discussed with application of problems of shaft design. Stress in beams of simple and composite shapes is considered as well as shear in beams and combined twisting and bending. Deflection of beams, shafts and structures are discussed using several calculation procedures. Stress and strain are considered in 3-dimensions with attention to principal directions. Buckling is considered and some attention is paid to plastic action in the various course topics. Both experimental and numerical laboratories will be conducted on various topics covered in the course.
Material behavior and the concepts of equilibrium and compatibility of deformation. Torsion of bars is discussed with application of problems of shaft design. Stress in beams of simple and composite shapes is considered as well as shear in beams and combined twisting and bending. Deflection of beams, shafts and structures are discussed using several calculation procedures. Stress and strain are considered in 3-dimensions with attention to principal directions. Buckling is considered and some attention is paid to plastic action in the various course topics. Both experimental and numerical laboratories will be conducted on various topics covered in the course.
Material behavior and the concepts of equilibrium and compatibility of deformation. Torsion of bars is discussed with application of problems of shaft design. Stress in beams of simple and composite shapes is considered as well as shear in beams and combined twisting and bending. Deflection of beams, shafts and structures are discussed using several calculation procedures. Stress and strain are considered in 3-dimensions with attention to principal directions. Buckling is considered and some attention is paid to plastic action in the various course topics. Both experimental and numerical laboratories will be conducted on various topics covered in the course.
Material behavior and the concepts of equilibrium and compatibility of deformation. Torsion of bars is discussed with application of problems of shaft design. Stress in beams of simple and composite shapes is considered as well as shear in beams and combined twisting and bending. Deflection of beams, shafts and structures are discussed using several calculation procedures. Stress and strain are considered in 3-dimensions with attention to principal directions. Buckling is considered and some attention is paid to plastic action in the various course topics. Both experimental and numerical laboratories will be conducted on various topics covered in the course.
Material behavior and the concepts of equilibrium and compatibility of deformation. Torsion of bars is discussed with application of problems of shaft design. Stress in beams of simple and composite shapes is considered as well as shear in beams and combined twisting and bending. Deflection of beams, shafts and structures are discussed using several calculation procedures. Stress and strain are considered in 3-dimensions with attention to principal directions. Buckling is considered and some attention is paid to plastic action in the various course topics. Both experimental and numerical laboratories will be conducted on various topics covered in the course.
Material behavior and the concepts of equilibrium and compatibility of deformation. Torsion of bars is discussed with application of problems of shaft design. Stress in beams of simple and composite shapes is considered as well as shear in beams and combined twisting and bending. Deflection of beams, shafts and structures are discussed using several calculation procedures. Stress and strain are considered in 3-dimensions with attention to principal directions. Buckling is considered and some attention is paid to plastic action in the various course topics. Both experimental and numerical laboratories will be conducted on various topics covered in the course.
Material behavior and the concepts of equilibrium and compatibility of deformation. Torsion of bars is discussed with application of problems of shaft design. Stress in beams of simple and composite shapes is considered as well as shear in beams and combined twisting and bending. Deflection of beams, shafts and structures are discussed using several calculation procedures. Stress and strain are considered in 3-dimensions with attention to principal directions. Buckling is considered and some attention is paid to plastic action in the various course topics. Both experimental and numerical laboratories will be conducted on various topics covered in the course.
Material behavior and the concepts of equilibrium and compatibility of deformation. Torsion of bars is discussed with application of problems of shaft design. Stress in beams of simple and composite shapes is considered as well as shear in beams and combined twisting and bending. Deflection of beams, shafts and structures are discussed using several calculation procedures. Stress and strain are considered in 3-dimensions with attention to principal directions. Buckling is considered and some attention is paid to plastic action in the various course topics. Both experimental and numerical laboratories will be conducted on various topics covered in the course.
Teaching
Online and Continuing Education Courses
Thesis research on an experimental or theoretical project in mechanical engineering under a faculty advisor. A formal thesis must be submitted to fulfill the course requirements.
Research
Research activities
- In-situ Damage Sensing of composites for Structural Health Monitoring
- Fracture and Mechanical Behavior of Additive Manufacturing Materials
- Impact Response of Enegry Absorbing Materials for Sports and Military Applications
- Fracture Behavior of Diabetic Simulated Bone
Research
Research awards
- $ 408,434 awarded by National Science Foundation for REU Site: Advanced Interdisciplinary Materials Research for Maritime Applications
- $ 103,765 awarded by EMBRY RIDDLE AERONAUTICAL UNIVERSITY INC/NSF for Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
- $ 405,320 awarded by National Science Foundation for Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
- $ 430,631 awarded by The National Science Foundation for REU Site: Advanced Interdisciplinary Materials Research for Maritime Applications
- $ 1,498,020 awarded by National Science Foundation for Scholarships to Accelerate Engineering Leadership and Identity in Graduate Students
Research
Research interests
- Composite Materials
- Experimental Mechanics
- Dynamic Characterization of Materials
- Damage Sensing
- Nano-mechanical Characterization
Select publications
See curriculum vitae for more publications
- Liu, J., Chalivendra, V., C. L., Huang, W (2017).
"Finite element based contact analysis of radio frequency MEMs switch membrane surfaces"
Journal of Micromechanics and Microengineering - Shkolnik K. and Chalivendra V.B. (2017).
“Numerical Studies of Electrical Contacts of Carbon Nanotubes Embedded Epoxy under Tensile Loading”
Acta Mechanica - Abdulrahman A. Kehail, Vijay Boominathan, Karoly Fodor, Vijaya Chalivendra, Tracie Ferreira, Christopher J. Brigham (2016).
"In Vivo and In Vitro Degradation Studies for Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Biopolymer"
Journal of Polymers and the Environment, 25(2), 296-307.
Dr. Chalivendra obtained his undergraduate degree and masters degree from Sri Venkateswara University College of Engineering, Tirupati, India in 1993 and 1997 respectively. He worked for two different industries: Bharat Electronics Ltd., and Tata Refractories Ltd., for two and half years in India before pursuing his doctoral degree at University of Rhode Island during 2000-2003. His doctoral dissertation is focused on analytical and experimental treatment of fracture studies in functionally graded materials. He developed analytical crack tip field equations for an arbitrarily oriented crack in functionally graded materials under both stationary and transient dynamic loading conditions. As a postdoctoral fellow at California Institute of Technology during 2003-2005, he conducted experimental investigation of well-controlled dynamic fragmentation studies for validation of large-scale simulations. He joined UMASS Dartmouth in 2005 and now serving as Professor in Mechanical Engineering Department. He is also currently serving as Graduate Program Director for the department. He published about 70 peer-reviewed journal articles and currently serving as a Technical Associate Editor for Experimental Mechanics journal. He was awarded about $2M external grant funding for conducting research for understanding materials behavior under various loading conditions at different length scales. He graduated sixteen masters students and one doctoral student from his research lab. He also trained 33 undergraduate students in his research lab and published 12 peer-reviewed articles with them as co-authors. His research interests include, Smart composite material, biological materials, nano-mechanical characterization of MEMs and polymers, high strain rate behavior, and impact characterization of sports helmets.