
Ming Shao, PhD
Assistant Professor
Computer & Information Science
Contact
508-910-6893
ntibpAvnbtte/fev
Dion 303A
Education
2016 | Northeastern University | PhD in Electrical and Computer Engineering |
2010 | Beihang University | ME in Computer Science |
2007 | Beihang University | BS in Applied Mathematics |
2006 | Beihang University | BE in Computer Science |
Teaching
Programs
- Computer Science BS, BS/MS
- Computer Science MS
- Computer Science Graduate Certificate
- Data Science BS, BS/MS
- Master's in Data Science MS
- Engineering and Applied Science PhD
- Mobile Applications Development
- Software Engineering Option
Teaching
Courses
Models of sequential, parallel, and distributed computations. The Chomsky hierarchy of formal languages and their accepting machines are studied in detail. The relationship of these languages and machines to computer programs is presented. Influence of a Turing machine and related formalisms on modern computing are studied. Decidability of decision problems is explained. Several models of parallel and distributed computations are introduced and compared.
Foundations of computer vision. Image formats, projection models, regions, filters, edge detection, segmentation, shape description and representation, object recognition and understanding, and stereo-vision are discussed.
Offered as needed to present advanced material to graduate students.
Research
Research Interests
- Transfer learning, and multi-modality recognition
- Social media analytics: kinship verification, occupation recognition
- Auto-encoder and deep feature learning
- Graph approximation and clustering
- Outlier detection and analysis
Ming Shao received B.E. degree in Computer Science, B.S. degree in Applied Mathematics, and M.E. degree in Computer Science from Beihang University, Beijing, China, in 2006, 2007, and 2010, respectively. He received Ph.D. degree in Computer Engineering from Northeastern University, Boston MA, 2016. He is a tenure-track Assistant Professor affiliated with College of Engineering at the University of Massachusetts Dartmouth since 2016 Fall. His current research interests include predictive modeling, adversarial machine learning, robust visual representation learning, and health informatics. He was the recipient of the Presidential Fellowship of State University of New York at Buffalo from 2010 to 2012, and the best paper award winner of IEEE ICDM 2011 Workshop on Large Scale Visual Analytics, and best paper award candidate of ICME 2014. He has served as the reviewers for many IEEE Transactions journals including TPAMI, TKDE, TNNLS, TIP, and TMM. He has also served on the program committee for the conferences including AAAI, IJCAI, ECAI, CVPR, ICCV, ICLR, ICDM, IEEE BigData, CIKM, ACM-MM, etc. He is the Associate Editor of SPIE Journal of Electronic Imaging, and IEEE Computational Intelligence Magazine. He is a member of IEEE.