# Renuka Rajapakse

## Full Time Lecturer

### Physics

#### Contact

508-999-8360

vveneteowiDyqewwh2ihy

Science & Engineering 203E

## Teaching

### Programs

## Teaching

### Courses

A laboratory course that accompanies PHY 102. Experiments provide students with a solid understanding of basic DC circuit concepts and an introduction to AC circuits.

Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.

Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.

Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.

A calculus-based introduction to the concepts of electricity and magnetism. Study of electric and magnetic fields, electric potential, capacitance and inductance, elementary circuits, and electromagnetic oscillations. Laboratory experiments provide students with a solid understanding of basic DC circuit concepts and an introduction to AC circuits.

A calculus-based introduction to the concepts of electricity and magnetism. Study of electric and magnetic fields, electric potential, capacitance and inductance, elementary circuits, and electromagnetic oscillations. Laboratory experiments provide students with a solid understanding of basic DC circuit concepts and an introduction to AC circuits.

A calculus-based introduction to the concepts of electricity and magnetism. Study of electric and magnetic fields, electric potential, capacitance and inductance, elementary circuits, and electromagnetic oscillations. Laboratory experiments provide students with a solid understanding of basic DC circuit concepts and an introduction to AC circuits.

The development of the mathematical and computational tools needed for solving more advanced physics problems. Series and complex numbers, complex roots and powers, linearity, special matrices, partial differentiation with change of variables, vector fields and physics of div, grad and curl. Analytical solutions and computer simulations are emphasized.