Renuka Rajapakse

faculty

Renuka Rajapakse, PhD

Assistant Teaching Professor

Physics

Contact

508-999-8360

vveneteowiDyqewwh2ihy

Science & Engineering 203E

Education

2011University of ConnecticutPhD
2005University of ConnecticutMS
1999University of Peradeniya, Sri LankaBSc

Teaching

  • Mathematical Methods
  • Electromagnetic Theory
  • Mechanics
  • Quantum Optics

Teaching

Programs

Teaching

Courses

Seminar on fundamental topics and new discoveries in physics. Also an introduction to the physics major program and faculty research.

Seminar on fundamental topics and new discoveries in physics. Also an introduction to the physics major program and faculty research.

Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.

Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.

Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.

Calculus-based introduction to classical mechanics, emphasizing problem solving. Topics include 1- and 2-dimensional kinematics and dynamics; Newton's Laws of Motion; work, energy and momentum; and rotational motion and angular momentum. Many of these topics are further explored in laboratory experiments.

Development of the mathematical tools useful in physics. Vector calculus, linear algebra, matrices, operators, orthogonal functions.

Teaching

Online and Continuing Education Courses

An introduction to astronomy that describes the advancement of astronomical knowledge and surveys the contents, properties, and physical processes of the universe. Simple mathematics will be used. Evening observing sessions at the UMass Dartmouth Observatory will be offered. The course is designed for non-science majors.
Register for this course.

Research

Research activities

  • Research Scientist, University of Connecticut

Research

Research awards

  • $ 231,213 awarded by Office of Naval Research for UMassD MUST III: Quantum Computing and Control in Noisy Environments

Research

Research interests

  • Quantum Optics
  • Quantum Computation
  • Atomic and Molecular Physics
  • Computational Physics

Select publications

  • J. Javanainen, R. Rajapakse (2019).
    Light propagation in systems involving two-dimensional atomic lattices
    Physical Review A, 100, 013616.
  • J. Javanainen, R. Rajapakse (2015).
    Bayesian inference to characterize Josephson oscillations in a double-well trap
    Physical Review A, 92, 023613.
  • R. Rajapakse, T. Bragdon, A.M. Rey, S.F. Yelin (2009).
    Single photon nonlinearities and optical quantum computing using ensembles of polar molecules
    Physical Review A, 80, 013810.

Additional links