Iren Valova, PhD
Professor
Computer & Information Science
Contact
508-999-8502
508-999-9144
ktgp0xcnqxcBwocuuf0gfw
Dion 302D
Education
1997 | Tokyo Institute of Technology, Japan | PhD in Computer Science |
1993 | Technical University, Sofia, Bulgaria | MS in Applied Mathematics |
1991 | Technical University, Sofia, Bulgaria | BS in Computer Science |
Teaching
Programs
Programs
- Biomedical Engineering and Biotechnology MS, PhD
- Computer Game Design
- Computer Science BS, BS/MS
- Computer Science Cybersecurity
- Computer Science Graduate Certificate
- Computer Science MS
- Data Science BS, BS/MS
- Data Science Graduate Certificate
- Data Science MS
- Engineering and Applied Science PhD
- Mobile Applications Development
- Software Engineering
Teaching
Courses
A culminating experience in which the student synthesizes his/her course knowledge and experimental skills into a brief but detailed experimental study, which also involves cross-field interdisciplinary cooperation. Although in some cases this project may be done individually under the supervision of one faculty member, it is expected that students will join in a team-based, collaborative effort involving students from a number of different disciplines, post-doctoral fellows and industry representatives and with intercampus participation.
Procedural Programming (C/C++) under Unix. Data types, variable declarations, arithmetic expressions, conditional statements, macros, function prototypes, standard libraries, file processing, pointers, structures, unions, and dynamic memory management are discussed. Unix file system, shell scripts, input/output redirection, piping, programming with standard I/O, and unix system calls are covered.
Procedural Programming (C/C++) under Unix. Data types, variable declarations, arithmetic expressions, conditional statements, macros, function prototypes, standard libraries, file processing, pointers, structures, unions, and dynamic memory management are discussed. Unix file system, shell scripts, input/output redirection, piping, programming with standard I/O, and unix system calls are covered.
Procedural Programming (C/C++) under Unix. Data types, variable declarations, arithmetic expressions, conditional statements, macros, function prototypes, standard libraries, file processing, pointers, structures, unions, and dynamic memory management are discussed. Unix file system, shell scripts, input/output redirection, piping, programming with standard I/O, and unix system calls are covered.
Procedural Programming (C/C++) under Unix. Data types, variable declarations, arithmetic expressions, conditional statements, macros, function prototypes, standard libraries, file processing, pointers, structures, unions, and dynamic memory management are discussed. Unix file system, shell scripts, input/output redirection, piping, programming with standard I/O, and unix system calls are covered.
Procedural Programming (C/C++) under Unix. Data types, variable declarations, arithmetic expressions, conditional statements, macros, function prototypes, standard libraries, file processing, pointers, structures, unions, and dynamic memory management are discussed. Unix file system, shell scripts, input/output redirection, piping, programming with standard I/O, and unix system calls are covered.
Part I of two-semester sequence of team development of a software product for a specific customer. This capstone project utilizes and integrates knowledge and skills acquired through study of software engineering. Provides hands-on experience with large-scale problem from conception to implementation of the solution. Is conducted in a framework of well-defined low-ceremony software process. The lecture covers software engineering models, quality management, risk management, and provides introduction to software processes. Technical, logistical, and social issues associated with software development are addressed.
Part I of two-semester sequence of team development of a software product for a specific customer. This capstone project utilizes and integrates knowledge and skills acquired through study of software engineering. Provides hands-on experience with large-scale problem from conception to implementation of the solution. Is conducted in a framework of well-defined low-ceremony software process. The lecture covers software engineering models, quality management, risk management, and provides introduction to software processes. Technical, logistical, and social issues associated with software development are addressed.
Prerequisites: Completion of three core courses. Development of a detailed, significant project in computer science under the close supervision of a faculty member, perhaps as one member of a student team. This project may be a software implementation, a design effort, or a theoretical or practical written analysis. Project report with optional oral presentation must be evaluated by three faculty members including the project supervisor.
Prerequisites: Completion of three core courses. Development of a detailed, significant project in computer science under the close supervision of a faculty member, perhaps as one member of a student team. This project may be a software implementation, a design effort, or a theoretical or practical written analysis. Project report with optional oral presentation must be evaluated by three faculty members including the project supervisor.
Research
Research interests
- Artificial intelligence
- Brain modeling
- Data mining
- Expert Systems
- Image processing