News 2013: UMass Dartmouth Department of Chemistry and Biochemistry Hold Ribbon Cutting for New 400 MHz Nuclear Magnetic Resonance (NMR) Facility

News 2013: UMass Dartmouth Department of Chemistry and Biochemistry Hold Ribbon Cutting for New 400 MHz Nuclear Magnetic Resonance (NMR) Facility
UMass Dartmouth Department of Chemistry and Biochemistry Hold Ribbon Cutting for New 400 MHz Nuclear Magnetic Resonance (NMR) Facility

Funded through a National Science Foundation Award, Facility will be Important Academic, Research Resource

UMass Dartmouth's Department of Chemistry and Biochemistry cut the ribbon recently on its new 400 MHz Nuclear Magnetic Resonance (NMR) facility. Funded through a National Science Foundation (NSF) award, the facility will play an important role as a research and academic resource for students and faculty, opening up possibilities across colleges and the university. 

Under the leadership of principal investigator (PI) Maolin Guo and co-PIs David Manke, Catherine Neto, Emmanuel Ojadi and Sivappa Rasapalli, the department received a $339,000 Major Research Instrument award from the NSF for the acquisition of a NMR Spectrometer, a primary means of characterizing chemical structures. From researching botulism antidotes to studying the health effects of cranberries, this instrument will impact nearly all chemistry and biochemistry projects.   

"The NMR facility creates new opportunity for students and faculty across colleges and the entire UMass Dartmouth research community," said UMass Dartmouth Associate Professor Emmanuel Ojadi, Chair of the Department of Chemistry and Biochemistry. "It will streamline projects for undergraduate, graduate and post-doctoral researchers in a way that was unconceivable before." 

From studying the health effects of cranberries to developing molecular imaging probes, the NMR spectrometer will impact multiple projects at UMass Dartmouth and beyond. 

Funded by NSF, Dr. Maolin Guo and his students have been developing fluorescent sensors to image iron ions in live cells. The spectrometer will be used to characterize these new molecular imaging probes. In another inorganic related project, Dr. David Manke will use the NMR to characterize the newly made inorganic molecules to be applied to the capture and activation of carbon dioxide. 

Dr. Sivappa Rasapalli's natural products based medicinal chemistry research group will immensely benefit from the access to the new facility in bringing some of the ongoing explorations to the next level. 

In the recently established UMass Cranberry Health Research Center, led by Professors Catherine Neto and Maolin Guo, Dr. Neto and her students isolate the bioactive phytochemicals from cranberry. The group will use the NMR to characterize and quantify the cranberry compounds that have potential use as antimicrobials, antioxidants and anti-cancer agents and determine their distribution in different cranberry cultivars. Dr. Guo and his students tag the compounds with fluorescent dye to track their bio-distribution and activities in cell models of Alzheimer's and cardiovascular diseases. 

The facility will benefit Dr. Bal Ram Singh and Dr. Shuowei Cai in their development of botulism antidotes. Dr. Ojadi's laboratory will take advantage of the NMR in modifying porphyrins towards porphyrimer synthesis for new applications in photobiology and photophysics energy materials. Dr. Donald Boerth's will use the facility to further study DNA damage induced by pesticides. 

In the College of Engineering, Dr. Sankha Bhomwick's group develops biocompatible polymers as novel scaffolds for tissue engineering or drug delivery vehicles. The NMR will be utilized to study the functionalization of various biomolecules on nano and micro-scaffolds that can be used for modulating cellular behavior or delivery vehicles for controlled drug release. It will also be useful to Dr. Yuegang Zuo of the Chemistry Department and Dr. Chen-Lu Yang at UMass Dartmouth's Advanced Technology & Manufacturing Center (ATMC), both of whom develop methods for monitoring environmental chemicals. 

The facility will also be accessible to local K-12 activities, researchers in industry and nearby institutions, such as Dr. Brian Dixon, who makes new battery materials at Massachusetts Maritime Academy. 

The spectrometer represents a big step forward in the department's ability to perform research, train students and attract new faculty.